РД 50-725-93: Методические указания. Совместимость технических средств электромагнитная. Радиопомехи индустриальные от воздушных линий электропередачи и высоковольтного оборудования. Методы измерения и процедура установления норм


РД 50-725-93: Методические указания. Совместимость технических средств электромагнитная. Радиопомехи индустриальные от воздушных линий электропередачи и высоковольтного оборудования. Методы измерения и процедура установления норм

Терминология РД 50-725-93: Методические указания. Совместимость технических средств электромагнитная. Радиопомехи индустриальные от воздушных линий электропередачи и высоковольтного оборудования. Методы измерения и процедура установления норм:

1. AM радиовещание

Несмотря на то, что не выработано точных рекомендаций, касающихся допустимых отношений сигнал/помеха для помех от ЛЭП, во всем мире проведен ряд испытаний.

При проведении испытаний уровни помех измерялись с помощью измерителя СИСПР либо измерителем, удовлетворяющим требованиям спецификации ANSI С63.2-1969. Для измерения уровня сигнала некоторые исследователи пользовались квазипиковым детектором, другие - детектором средних значений.

В табл. 6 приведены отношения сигнал/помеха Rp в децибелах, скорректированные, чтобы характеризовать уровни полезных сигналов, измеренных детектором средних значений, и уровни помехи, измеренной квазипиковым детектором измерителя СИСПР. В табл. 7 определены градации качества приема, используемые в табл. 6. Использование при измерениях уровня сигнала среднего значения представляется более логичным, чем квазипикового значения, так как уровни сигнала, определяемые международными организациями (МККР и САРСР), представляют собой средние или эффективные значения модулированного сигнала.

Таблица 6

Определения термина из разных документов: AM радиовещание

5.1. Введение

СИСПР на протяжении многих лет рассматривал вопрос о нормах на радиопомехи от воздушных ЛЭП и высоковольтного оборудования для обеспечения защиты радиовещательного и телевизионного приема. Степень ухудшения качества приема, вызванного радиопомехами, определяется отношением сигнал/помеха в месте установки приемного устройства. При одном и том же субъективном мешающем действии отношение сигнал/помеха зависит от характера источника помехи. При требуемом отношении сигнал/помеха допустимый уровень помехи зависит от многих факторов, в том числе от минимального уровня защищаемого сигнала, минимального расстояния между линией и местом приема защищаемого сигнала, погодных условий и т.д. Существуют трудности и в определении условий проверки соответствия нормам, например, различные мнения о том, должны ли измерения проводиться в хорошую погоду, в плохую погоду или в ту и другую.

Практически каждый основной фактор подвержен статистическим колебаниям. Общепризнано, что международные дискуссии не могут полностью решить эти проблемы. Некоторые страны приняли обязательные стандарты на нормы на радиопомехи от ЛЭП. У стран, членов СИСПР, имеется общее соглашение, что комитет должен разработать руководящий документ о простом и эффективном методе создания норм СИСПР на основе национальных норм, учитывая конкретные условия, которые регламентирующие органы власти согласились бы принять.

Кроме того, имеется соглашение, что метод установления норм должен быть проиллюстрирован на примерах, основанных на приемлемых уровнях сигнала, использовании соответствующих приемных устройств и практичных и экономичных конструкций ЛЭП. Метод должен давать возможность оценки влияния радиопомех от ЛЭП на прием сигналов при любых условиях.

Ввиду того, что необходимо принять ряд допущений, касающихся параметров, которые могут отличаться от реальных условий, а также учитывая экономические факторы, рекомендуемые нормы не могут гарантировать 100 %-ную защиту радиоприема от помех для 100 % слушателей и зрителей.

Определения термина из разных документов: Введение

5.6. Дополнительные замечания

Большинство полевых испытаний по сбору требуемых данных было проведено в низкочастотном и среднечастотном диапазонах. Вследствие этого данные, представленные по диапазону УКВ, следует рассматривать как предварительные и не делать, базируясь на них, основных выводов. Этот вопрос находится в стадии рассмотрения.

Если предельные значения уровней помех измерялись и статистически оценивались в соответствии с подразделом 4.4, то они также представляют собой статистические значения, которые не превышаются в течение 80 % времени. Значения помех, вызванных коронным разрядом на проводах, значительно выше средних уровней помех при хороших погодных условиях. Этот фактор должен приниматься во внимание, когда эти значения сравнивают со стандартными величинами, принятыми в различных странах для типичных условий хорошей погоды.

Приведенные примеры норм, как и для других источников индустриальных помех, для которых существуют нормы СИСПР, основаны на требованиях по защите приема у подавляющего большинства слушателей в условиях, преобладающих в большинстве мест в течение большей части времени. Такие нормы не обеспечивают требуемого качества приема в ряде исключительных случаев, когда совпадает несколько неблагоприятных факторов.

Практика показала, что допустимые уровни помех, приведенные в настоящем разделе, вполне могут быть обеспечены при условии проектирования и построения линий с учетом требований по радиопомехам и при надежной эксплуатации ЛЭП. Более низкие уровни помех были зафиксированы во многих находящихся в эксплуатации линиях, в которых наличие других требований (не связанных с радиопомехами) обусловило использование в конструкции проводов больших размеров (например, требование обеспечить большую пропускную способность ЛЭП). Следует считать, что методы определения норм, описанные в настоящем разделе, могут быть основой при определении норм.

Определения термина из разных документов: Дополнительные замечания

4.1. Измерительные приборы

4.1.1. Реакция стандартных приборов СИСПР для измерения помех, создаваемых короной переменного тока

В Публикации СИСПР 16 (ГОСТ 16842) приведены характеристики приборов для измерения периодически повторяющихся импульсов с учетом частоты их повторения для различных частотных диапазонов и ширины полосы пропускания.

На черт. 1 показана форма этих импульсов при их прохождении через различные каскады измерительного прибора. В конкретном случае импульсов коронного разряда, создаваемых высоковольтными ЛЭП переменного тока, отдельные импульсы распределены внутри периода тока промышленной частоты неравномерно, а следуют «пакетами», сгруппированными около максимумов тока в периоде промышленной частоты. Продолжительность «пакета» не более нескольких миллисекунд.

В результате соответствующим образом заданных постоянных времени разряда и заряда детектора измерители СИСПР не реагируют на отдельные импульсы внутри «пакета», который воспринимается как одиночный импульс с определенной амплитудой.

Поэтому частота повторения импульса для измерителя СИСПР постоянна и равна 2f (где f - промышленная частота) для однофазной и 6f для трехфазной системы.

На черт. 2 показан обычный случай, когда отдельные импульсы короны, возникающие около максимумов положительных полупериодов промышленной частоты, значительно больше по амплитуде, чем импульсы, возникающие около максимумов отрицательных полупериодов промышленной частоты. Следовательно, в трехфазной ЛЭП имеется три «пакета» импульсов помех с высокой амплитудой помех и три «пакета» импульсов с малой амплитудой помех во время каждого периода длительностью 1/f.

При измерении поля радиопомех в непосредственной близости от ЛЭП антенна измерительного прибора находится на разном расстоянии от фазных проводов.

Определения термина из разных документов: Измерительные приборы

4.3. Лабораторные измерения по методике СИСПР

4.3.1. Введение

Рассматривается метод, которым можно пользоваться в лаборатории или на измерительной площадке для измерения радиопомех, создаваемых оборудованием подстанций и компонентами, используемыми в высоковольтных линиях и на подстанциях (разъединители, проходные изоляторы, изоляторы и соединительная арматура). Метод эффективен для типовых испытаний и для повседневных или выборочных проверок, а также для научно-исследовательских целей.

Лабораторные исследования радиопомех проводятся по стандартной схеме испытаний измерением токов или напряжений.

Выбор условий испытаний должен основываться на следующем принципе: измерения должны проводиться в условиях и на схемах, имитирующих реальные условия эксплуатации и, если необходимо, самые жесткие, условия, которые могут возникнуть при работе аппаратуры. Первоначально оценка радиопомех проводилась по напряжению, при котором возникает или затухает видимая корона, и значение которого субъективно зависит от наблюдателя. Этот метод теперь заменен лабораторными измерениями.

4.3.2. Состояние испытуемого объекта

Уровень радиопомех, создаваемых высоковольтным оборудованием, находится в прямой зависимости от состояния поверхности оборудования. При лабораторных испытаниях состояние испытуемого объекта определяют по следующим данным:

1) новый;

2) чистый или слегка загрязненный; характер загрязнения должен быть точно указан;

3) сухой, слегка влажный или мокрый (например, в условиях воздействия искусственного дождя);

4) комбинация этих состояний, например, загрязненность и влажность.

Лабораторные испытания допускается проводить только на чистых и сухих объектах. Испытание объектов рекомендуется проводить и в дождь в условиях, установленных в стандартах, так как эти условия часто встречаются на практике и могут привести к более высоким уровням радиопомех, чем в сухую погоду.

Когда рассматривается только состояние поверхности, желательно, чтобы испытания образцов проводились при их загрязнении и увлажнении, близких к условиям эксплуатации и нормальном рабочем напряжении, соответствующем условиям эксплуатации.

Если испытуемый объект должен быть чистым и сухим, его необходимо протереть сухой тряпкой, чтобы удалить пыль и волокна.

Если нет других указаний, то условия испытаний, описанные в данном пункте, пригодны для бывших в употреблении влажных и/или загрязненных объектов, а также для новых, чистых и сухих объектов.

4.3.3. Требования к месту проведения испытаний

Испытания желательно проводить внутри экранированной комнаты, которая достаточно велика, чтобы стены и пол не оказывали существенного воздействия на распределение электрического поля на поверхности испытываемого объекта. Сети электропитания и освещения должны проходить в экранированное помещение через фильтры, чтобы избежать проникновения радиопомех, имеющихся в окружающем пространстве.

Если экранированная комната отсутствует, то испытание можно проводить в любом месте, где уровень внешних помех достаточно мал по сравнению с измеряемыми уровнями.

4.3.4. Атмосферные условия

Нормальная стандартная атмосфера характеризуется следующими параметрами:

температура - +20 °С;

давление - 1,013×105 Н/м2 (1013 мбар);

относительная влажность - 65 %

Испытания допускается проводить при следующих атмосферных условиях:

температура - от +15 до +35 °С;

давление - от 0,870×108 Н/м2 до 1,070×105 Н/м2 (от 870 до 1070 мбар);

относительная влажность (для испытания объектов в сухом состоянии) - от 45 до 75 %.

При научно-исследовательских работах могут быть выбраны другие атмосферные условия (в зависимости от целей испытаний).

Когда испытание проводят на сухом объекте, то он должен находиться в тепловом равновесии с атмосферой измерительной площадки, чтобы избежать конденсации влаги на поверхности объекта.

О влиянии на уровни радиопомех, создаваемых испытываемым объектом, изменений атмосферных условий (в указанных пределах) нет достаточной информации. Поэтому поправки для коррекции результатов измерений не используются, но температура воздуха, атмосферное давление и относительная, влажность,существовавшие во время испытания, должны быть зафиксированы.

4.3.5. Схема испытаний (основная)

На черт. 4 показана эквивалентная схема испытаний. Ток радиопомех, генерируемый объектом, протекает через полное сопротивление Zs и сопротивление RL. Фильтр F препятствует проникновению этого тока в высоковольтные соединительные цепи, идущие к трансформатору, и наоборот, токи радиопомех от других действующих источников в этих высоковольтных соединительных цепях ослабляются фильтром, стоящим перед входом в высокочастотную часть цепи. Полное сопротивление Zs должно быть нулевым наизмеряемой частоте и бесконечным - на частоте питающей сети. Сопротивление RL представляет собой резистивную (активную) нагрузку испытываемого объекта при эксплуатации (например, волновое сопротивление ЛЭП).

Определения термина из разных документов: Лабораторные измерения по методике СИСПР

4.2. Методика СИСПР измерения помех в диапазоне 0,15 - 30 МГц

4.2.1. Частоты измерения

Базисная частота измерений - 0,5 МГц. Рекомендуется производить измерения на частоте 0,5 МГц ± 10 %, допускается использовать другие частоты, например, 1 МГц. Частота 0,5 МГц предпочтительна, так как радиопомехи в этой части диапазона имеют более высокий уровень, и частота 0,5 МГц находится между сигналами радиостанций, работающих в низкочастотном и среднечастотном диапазонах радиовещания.

Присутствие стоячих волн может вызвать ошибку, поэтому не пользуются значениями поля радиопомех, измеренными на одной частоте, а получают среднюю кривую по результатам многих показаний по всему диапазону. Измерения должны проводиться на (или вблизи) следующих частотах: 0,15; 0,25; 0,5; 1,0; 1,5; 3,0; 5,0; 6,0; 10; 15; 30 МГц. Необходимо избегать частоты, на которой происходит наложение каких-либо мешающих сигналов на измеряемые уровни помех.

4.2.2. Антенна

Антенна может представлять собой электрически экранированную рамку, размеры которой таковы, что она полностью вписывается в квадрат размером 60×60 см. Симметричность должна быть такой, чтобы в однородном поле отношение максимального и минимального отсчетов измерительного прибора при повороте антенны было не менее 20 дБ. Основание антенны должно находиться примерно на высоте 2 м* от земли. Антенна должна вращаться вокруг вертикальной оси, при этом фиксируется максимальное показание прибора. Если плоскость антенны не параллельна направлению ЛЭП, то ориентация должна быть указана.

* В отечественной нормативно-технической документации регламентирована высота 1 м.

Измерения могут выполняться с использованием вертикальной штыревой антенны, хотя этот метод не является предпочтительным из-за большей нестабильности электрической составляющей поля радиопомех и возможных эффектов электрической индукции, обусловленных напряжением промышленной частоты.

Необходимо произвести контрольные измерения, чтобы убедиться, что провода питания или другие провода, соединенные с измерительными приборами, не влияют на измерения.

4.2.3. Измерительное расстояние от ЛЭП

Необходимо определить поперечный профиль радиопомех. При сравнении результатов измерений базисное расстояние для определения уровня помех от ЛЭП рекомендуется принимать равным 20 м. Расстояние нужно измерять от центра антенны до ближайшего провода. Должна быть отмечена высота провода над землей. Если уровень напряженности поля помех построить в зависимости от расстояния с использованием логарифмической шкалы, то получается практически прямая линия. Тогда уровень напряженности поля помех на расстоянии 20 м легко определяется при помощи интерполяции или экстраполяции (черт. 3).

4.2.4. Выбор места измерения

При оценке радиопомех от ЛЭП необходимо избегать некоторых мест измерений, однако эти ограничения не накладываются, если проводится исследование радиопомех.

Измерения следует проводить в середине пролета и, желательно, в нескольких пролетах. Измерения не должны производиться вблизи точек, где ЛЭП меняют направление или пересекаются.

Измерения не проводят в пролетах, высота которых больше или меньше от средней. Место измерений должно быть ровным, свободным от деревьев и кустов, и находиться на некотором расстоянии от больших металлических конструкций, а также от других воздушных ЛЭП и телефонных линий.

Определения термина из разных документов: Методика СИСПР измерения помех в диапазоне 0,15 - 30 МГц

5.4. Методы определения помех на соответствие нормам

Приближенное значение уровня радиопомех от коронных разрядов на проводах ЛЭП может быть рассчитано по каталогам с помощью профилей или по формуле

E = 3,5gmax + 12r - 30*,                                                        (11)

где Е - напряженность поля радиопомех на расстоянии 20 м от ближайшего провода, дБ (мкВ/м);

gmax - наибольшее эффективное значение градиента напряжения на поверхности провода, кВ/см;

r - радиус провода, см.

* В отечественной нормативно-технической документации используются максимальные амплитудные значения градиента и формула имеет вид

E = 2,6gmax + 12r - 30.

Формула справедлива для ЛЭП напряжением 200 - 765 кВ, максимальным градиентом 12 - 20 кВ/см**, для частоты измерения 0,5 МГц. Надежное прогнозирование уровней помех важно потому, что после введения ЛЭП в эксплуатацию экономически нецелесообразно корректировать ее конструкцию. Как только линия начинает эксплуатироваться, возникает несколько альтернативных процедур измерения, при помощи которых этот прогнозированный уровень может быть проверен. Выбор метода зависит от времени, имеющегося для измерений и от требуемой степени точности.

** Соответствует амплитудным значениям от 17 до 28 кВ/см.

5.4.1. Долговременная запись результатов

Этот метод наиболее точный для оценки уровня помех, создаваемых ЛЭП, но требует много времени. Установка для записи помех должна быть размещена вблизи исследуемой ЛЭП. Непрерывные измерения следует проводить не менее года. Пригодность места записи должна контролироваться при помощи измерений, выполненных в различных точках вдоль ЛЭП. Результаты должны наноситься на вероятностный график. С графика считывается уровень помехи, который не превышается в течение заданного процента времени.

5.4.2. Метод выборки

Этот практичный и точный метод соответствует требованиям Рекомендации СИСПР 46/1. Не менее 15, а лучше 20 и более отдельных серий измерений уровня помех выполняется в различных местах ЛЭП при различных погодных условиях. Выбор различных погодных условий должен быть пропорциональным процентному соотношению погодных условий в зоне прохождения ЛЭП. Эти измерения анализируются, чтобы установить уровень, который не будет превышаться в течение 50, 80 или 95 % времени (с доверительной вероятностью 80 %) в соответствии с выбранным критерием.

Метод выборки описан в п. 4.4 для случая 80 %-ного критерия.

5.4.3. Обзорные методы

Если ограниченность времени или какая-то другая причина не позволяют применять методы, приведенные в пп. 5.4.1 и 5.4.2, то может быть рассмотрена альтернатива выполнения измерений при хорошей погоде или при сильном дожде. Этот метод может дать требуемые результаты, когда основным источником помех является коронный разряд на проводе и когда имеются кривые распределения радиопомех для линии конкретного типа и для погодных условий в течение всего года. Кривые можно получить из данных предыдущих точных измерений, проведенных на конкретной линии или на линии подобного типа при таких же погодных условиях. Предпочтительно иметь три кривые распределения: при хорошей погоде, снятую при сильном дожде и снятую для погодных условий, наблюдаемых в течение всего года.

Методы, рассмотренные в пп. 5.4.1 и 5.4.2, не применимы к линиям с напряжением ниже 72,5 кВ, в которых коронный разряд на проводе не является основным источником радиопомех.

Измерения при хорошей погоде должны производиться в различных местах линии и в различное время. Из результатов этих измерений определяется 50 %-ный уровень помех для хорошей погоды, который используется в качестве базисного уровня для набора кривых. По этим кривым затем можно оценить 80 %-ный уровень помех для всех погодных условий. Этот метод надежен в зависимости от надежности кривых распределения.

В общем случае 80 %-ное значение уровня помех для всех погодных условий на 5 - 15 дБ (в зависимости от климатической зоны) выше, чем 50 %-ное значение для хорошей погоды.

Ввиду того, что уровень радиопомех, вызываемых коронным разрядом на проводе при сильном дожде, относительно стабилен и характеризуется хорошей повторяемостью результатов, нет необходимости проводить эти измерения в различное время. Но измерения при плохой погоде тоже должны проводиться на различных участках линии. По этим результатам измерений определяется 50 %-ный уровень для стабильного сильного дождя и используется в качестве базисного уровня для набора кривых распределения, чтобы оценить 80 %-ный уровень помех для всех погодных условий. Успех применения метода измерений зависит от надежности кривых распределения, хотя считается, что оценка 80 %-ного значения уровня помех для всех погодных условий по результатам измерений при плохой погоде является более надежной, чем по данным измерений, выполненных при хорошей погоде. В общем случае 80 %-ный уровень помех для всех погодных условий примерно на 5 - 12 дБ ниже, чем 50 %-ный уровень для стабильного сильного дождя.

5.4.4. Альтернативный критерий для приемлемого уровня помех

Может быть использован один из критериев для определения уровней помех, рассмотренных в пп. 5.2 и 5.4.3. Если выбран средний уровень помех для хорошей погоды, то следует выполнить серию измерений в типичных условиях хорошей погоды. Необходимо выполнить не менее трех измерений в трех различных местах линии. Если позволяет время, то эта серия измерений должна быть повторена в другой день. Среднее арифметическое измеренных величин может быть принято в качестве среднего уровня помех линии для хорошей погоды.

5.5. Примеры определения норм

5.5.1. Радиоприем

Приведены примеры расчета норм, основанные на допущениях, принятых в пп. 5.2 - 5.4. Нормы могут быть также определены для различных уровней сигнала, отношения сигнал/помеха и расстояния от ЛЭП. И, наоборот, при заданном уровне помех может быть определено минимально допустимое расстояние для обеспечения удовлетворительного радиоприема при данной напряженности поля сигнала.

Степень затухания в поперечном направлении от ЛЭП является усредненной величиной. Она зависит от конструкции линии и от местных условий. Значения степени затухания могут меняться, поэтому их рекомендуемые величины не должны использоваться для расстояний, существенно отличающихся от указанных в п. 5.3.5.1.

Радиопомехи обычно измеряются на частоте 0,5 МГц. Если необходимо защитить сигнал определенной частоты в радиовещательном диапазоне, то измеренные значения радиопомех должны быть скорректированы для конкретной частоты. Например, на частоте 1 МГц уровень помехи должен быть примерно на 5 - 6 дБ ниже, чем на частоте 0,5 МГц.

Нормы определяют на основе следующих параметров (черт. 10):

1) минимальный уровень сигнала, который должен быть защищен;

2) минимально допустимое отношение сигнал/помеха;

3) базисный уровень помех (на расстоянии 20 м от ближайшего провода) при указанных погодных условиях;

4) защитное расстояние, т.е. минимальное расстояние от линии, на котором сигнал должен быть защищен до требуемого качества приема.

Определения термина из разных документов: Методы определения помех на соответствие нормам

2.2. Публикации МЭК

60-2 (1973) «Методика проверки высоковольтного оборудования. Часть 2. Процедуры проверки»;

437 (1973) «Проверка уровня радиопомех, создаваемых изоляторами, используемыми в высоковольтных цепях постоянного тока».

Определения термина из разных документов: Публикации МЭК

2.1. Публикации СИСПР

16 (1977) «Приборы СИСПР для измерений радиопомех и методы измерений» (ГОСТ 16842);

18-1 (1982) «Радиопомехи от воздушных линий электропередачи и высоковольтного оборудования. Часть 1. Описание физических явлений» ( title="Методические указания. Совместимость технических средств электромагнитная. Радиопомехи индустриальные от воздушных линий электропередачи и высоковольтного оборудования. Описание физических явлений");

18-3 (1986) «Радиопомехи от воздушных линий электропередачи и высоковольтного оборудования. Часть 3. Практическое руководство по уменьшению радиопомех» ( title="Методические указания. Совместимость технических средств электромагнитная. Радиопомехи индустриальные от воздушных линий электропередачи и высоковольтного оборудования. Практические рекомендации по уменьшению радиопомех").

Определения термина из разных документов: Публикации СИСПР

5.2. Смысл норм СИСПР для ЛЭП и высоковольтного оборудования

В Рекомендации СИСПР 46/1 «Определение понятия норма СИСПР» и Публикации СИСПР 16 (ГОСТ 16842) определены статистические основы и критерий оценки соответствия нормам СИСПР продукции массового производства.

При помехах от ЛЭП и высоковольтного оборудования этот критерий не может быть применен непосредственно. Однако можно установить его связь со статистическим распределением помех при изменении атмосферных условий. Для ЛЭП и их оборудования нормы СИСПР можно интерпретировать как уровень помех, не превышаемый в течение 80 % времени. Однако (см. подраздел 4.4) такое применение правила «80 %/80 %» предполагает проведение большего числа измерений, чем определено в Рекомендации 46/1. Кроме того, за 80 %-ный уровень для помех коронного разряда от проводов для ЛЭП в умеренных климатических условиях обычно принимают уровень в плохую погоду, в то время как для линий, работающих в сухих климатических условиях, это обычно уровень при хорошей погоде. Регламентирующим органам власти следует помнить об этом при принятии решения о введении 80 %-ного уровня.

Различные критерии, такие как средний уровень помех при хорошей погоде, максимальный уровень помех при хорошей погоде или уровень помех при сильном дожде также могут быть приняты в качестве основы для определения норм.

Определения термина из разных документов: Смысл норм СИСПР для ЛЭП и высоковольтного оборудования

4.4. Статистическая оценка уровня радиопомех от ЛЭП

В Публикации СИСПР 16 (ГОСТ 16842) приведены методы статистических оценок для установления соответствия изделий массового производства нормам СИСПР. Правило «80 %/80 %» основано на применении статистических методов, которые должны давать потребителю 80 %-ную вероятность того, что 80 % изделий рассматриваемого типа создает помехи, которые ниже установленной нормы. Метод основан на нецентральном t-распределении и сущность правила «80 %/80 %» СИСПР интерпретируется для воздушных линий электропередачи таким образом, что уровень радиопомех не должен превышать норму в течение времени, превышающем 80 % времени непрерывной работы ЛЭП, с доверительной вероятностью не менее 80 %.

Отсчет - единичное измерение (в децибелах) в данном месте при данных метеорологических условиях. Если показания измерителя колеблются, тогда нужно использовать среднее значение, которое берется за период не менее 10 мин.

Каждая серия измерений состоит из усредненных отсчетов для конкретных метеорологических условий, снятых в трех различных местах, равномерно распределенных вдоль линии ЛЭП. В любой день должна производиться одна серия измерений для одних конкретных метеорологических условий. Измерения в разных местах должны исключить эффекты местных неоднородностей (например, стоячих волн). Следует избегать мест измерения, в которых возможно получение нетипичных показаний.

При применении методов измерений, приведенных в п. 4.2, следует провести не менее 15 (а предпочтительно 20 или более) серий измерений.

Число серий измерений для каждых погодных условий (сухая погода, дождь, снег и т.д.) должно быть пропорционально частоте появления каждого из этих погодных условий для конкретной зоны*.

* В отечественной нормативно-технической документации в полосе частот 30 - 1000 МГц регламентируется проведение измерений также при сильном ветре.

Соответствие ЛЭП норме на помехи определяется из условия (Публикация СИСПР 16)

x030.gif                                                              (5)

где x032.gif - среднее значение уровня радиопомех от ЛЭП из n циклов измерений; вычисляемое по формуле

x034.gif                                             (6)

Sn - стандартное отклонение радиопомех, вычисляемое по формуле

x036.gif                                                              (7)

k - константа, зависящая от n и определенная таким способом, чтобы выполнялось правило «80 %/80 %». Значения k, которые должны использоваться для числа серий измерений n, приведены в табл. 1:

Таблица 1

Определения термина из разных документов: Статистическая оценка уровня радиопомех от ЛЭП

2. Телевизионное вещание

Ряд испытаний по определению отношения сигнал/помеха были проведены в отношении помех, создаваемых ЛЭП в метровом телевизионном диапазоне. Результаты этих испытаний показывают, что можно считать удовлетворительным соотношение, равное 40 дБ (при измерении сигнала детектором среднего значения, а помехи - измерителем СИСПР). Однако данный вопрос находится в стадии рассмотрения.

Определения термина из разных документов: Телевизионное вещание

5.3. Технические аспекты определения норм

5.3.1. Основной подход

Основное требование - получить требуемое отношение сигнал/помеха на входе приемника для удовлетворительного приема радиовещательных сигналов. При введении регламентирующих норм к компетенции соответствующих органов относится определение минимальной напряженности поля сигнала, который необходимо защищать, и отношения сигнал/помеха, которые обеспечат удовлетворительный прием радиовещательных сигналов. В этом подразделе представлена информация по допустимым отношениям сигнал/помеха, приведена информация по минимальным уровням сигнала, которые должны быть защищены, показано, как можно сопоставить уровень защищаемого сигнала и требуемое отношение сигнал/помеха с уровнем помех на базисном расстоянии (20 м) от ближайшего провода ЛЭП с тем, чтобы определить защитное расстояние. Защитное расстояние - минимальное расстояние от ЛЭП, необходимое для того, чтобы защитить минимальный радиовещательный сигнал в течение определенного времени. Например, если выбран 80 %-ный уровень в качестве основы для оценки радиопомех, тогда защитным расстоянием должно быть минимальное расстояние от ЛЭП, на котором минимальный защищаемый сигнал может приниматься 80 % времени с приемлемым отношением сигнал/помеха. Если средний уровень помех при хорошей погоде является основным для установления норм, то защитное расстояние должно быть минимальным расстоянием от ЛЭП, на котором минимальный уровень защищаемого сигнала может приниматься в течение 50 % времени при хорошей погоде с приемлемым отношением сигнал/помеха. Подобные выводы применимы и для других вероятностей, которые берутся по кривой распределения помех для всех погодных условий и для каких-либо одних погодных условий.

Следует учитывать тот факт, что в большинстве мест уровень сигнала будет выше минимального и иногда можно использовать преимущества направленности некоторых типов приемных антенн для улучшения отношения сигнал/помеха. Могут быть случаи, когда расстояние между ЛЭП или высоковольтным оборудованием и местом приема будет меньше, чем защитное расстояние. Статистически эти факторы часто имеют тенденцию уравновешивать друг друга и таким образом позволяют обеспечить удовлетворительный прием сигналов даже в зонах, расположенных внутри защитного расстояния. Приемные устройства, находящиеся в этих зонах и подвергающиеся воздействию помех, могут, например, подключаться к удаленным антеннам или к кабельным системам.

5.3.2. Сфера действия

5.3.2.1. Нормы на радиопомехи применимы к энергетическим системам в целом, а не к отдельным элементам (трансформаторы, изоляторы и т.д.).

Нормы устанавливают на все линии переменного тока и подстанции с рабочим напряжением от 1 до 800 кВ*. В настоящее время недостаточно информации для того, чтобы привести примеры установления норм для линии постоянного тока, хотя основные принципы могут быть теми же. Этот вопрос находится в стадии рассмотрения.

* В отечественной нормативно-технической документации нормы устанавливают для ЛЭП напряжением до 1150 кВ.

Нормы на помехи основываются на законах поперечного затухания применимых к типичным ЛЭП, и на соответствующих измерительных методах СИСПР и приборах описанных в разд. 1. В настоящее время нет достаточно данных по затуханию помех от подстанций. Однако для простоты можно пользоваться теми же законами затухания, что и для ЛЭП; базисное расстояние (20 м) отсчитывается от внешней границы предохранительного ограждения подстанции*. Во внимание принимаются только постоянные помехи от подстанций. Кратковременная помеха переходного процесса, вызванная нарушением (разрывом) схемы энергоснабжения, не учитывается.

* В отечественной нормативно-технической документации расстояние зависит от напряжения подстанции.

5.3.2.2. Для того, чтобы обеспечить защиту «приемлемых» уровней сигналов систем вещания, рассматривают частотный диапазон 0,15 - 300 МГц, особое внимание уделяется диапазонам AM радиовещания (0,15 - 1,7 МГц), а также диапазонам телевещания и ЧМ радиовещания в метровом диапазоне волн (47 - 230 МГц). ЛЭП обычно создают незначительные помехи радиовещательному приему на частотах выше 300 МГц и имеется лишь ограниченная информация по уровням помех на этих частотах, поэтому диапазоны выше 300 МГц в настоящее время не рассматриваются.

Понятие «приемлемые уровни сигналов» может меняться в зависимости от типа системы вещания и части земного шара. Международный союз электросвязи (МСЭ) делит земной шар на три региона (1, 2 и 3). Регионы 1 и 3 подразделяются на три зоны (А, В и С) по климатическим условиям**. В каждом регионе и каждой зоне установлены определенные уровни мощности передатчиков, минимальные уровни защищаемого сигнала и требуемые защитные отношения для каналов одинаковой частоты и для соседних каналов и т.д.

** Территория Российской Федерации отнесена к региону 1, зона А.

Уровни защищаемых радиосигналов в низкочастотном (0,15 МГц - 0,28 МГц) и среднечастотном (0,5 МГц - 1,7 МГц) радиовещательных диапазонах регламентирует МСЭ. Применяемые на практике минимальные уровни защищаемых сигналов, а также защитные отношения часто отличаются от рекомендаций МСЭ. В Северной Америке, например, диапазон от 0,5 до 1,7 МГц регламентируется Северо-Американским Региональным Соглашением по Радиовещанию (САРСР). Некоторые отличия в параметрах являются результатом различий в идеологии радиовещания, например, в Европе принято использовать небольшое число всенаправленных радиопередатчиков высокой мощности, чтобы покрыть всю страну. В Северной Америке имеется множество частных станций, часто с остронаправленными антеннами, направляющими сигнал в определенный город или регион страны. Мощность радиопередатчика обычно ограничена 50 кВт и защищаемые уровни принимаемого сигнала ниже, чем в Европе.

Примечание. Значения верхних и нижних границ различных частотных диапазонов, используемых для радиовещания, являются ориентировочными. Точные величины меняются в зависимости от региона и подвергаются периодическому пересмотру.

5.3.3. Минимальные уровни защищаемого радиовещательного сигнала

Отдельные национальные организации должны определять минимальные уровни защищаемого сигнала от воздействия помех от ЛЭП применительно к соответствующим погодным условиям. Для низкочастотного и среднечастотного диапазонов МСЭ рекомендует минимальные значения напряженности поля, необходимые для превышения естественных помех (атмосферные помехи, космические помехи и т.д.). Для планирования радиовещания МСЭ рекомендовал в качестве информационных данных номинальные уровни полезного сигнала. В приложении 3 приведены рекомендуемые значения для минимальной и номинальной реализуемой напряженности поля полезного сигнала.

Уровни естественных помех меняются в зависимости от времени и географического положения, поэтому полезный сигнал с уровнем ниже рекомендуемого значения в одно время принимают как удовлетворительный, в другое - как неудовлетворительный, независимо от помех, создаваемых ЛЭП или другими индустриальными источниками.

В диапазонах очень высоких частот (30 - 300 МГц) Международный Консультативный Комитет по радиосвязи (МККР) рекомендует минимальные уровни сигнала (для региона 1), приведенные в табл. 2.

Таблица 2

Определения термина из разных документов: Технические аспекты определения норм

5.7. Технические аспекты определения норм для оборудования линий и подстанций

Принцип установления норм на напряжение радиопомех для линейных изоляторов и защитной арматуры, а также для силового оборудования и защитной арматуры подстанций в диапазоне низких и средних частот должен состоять в том, чтобы их значения в суммарном уровне помех от ЛЭП были незначительными. Принцип применим к ЛЭП переменного тока, у которых провода работают при поверхностном градиенте 17 - 20 кВ/см и более, предполагает координацию между помехой, создаваемой изоляторами и защитной арматурой, и помехой, создаваемой коронным разрядом на проводах линии. Для линий переменного тока с более низким поверхностным градиентом напряжение помехи, создаваемой линейным оборудованием, должно быть таким же низким, как и напряжение помехи, создаваемой оборудованием, используемым на линиях с поверхностным градиентом около 17 кВ/см.

Принцип применим к линиям постоянного тока, но никаких цифр, характеризующих градиент, не приводится, так как не установлено соотношение между помехами, создаваемыми коронным разрядом на проводах, и помехами, создаваемыми изоляторами и защитной арматурой.

Корреляционные соотношения между напряжением радиопомех и соответствующей напряженностью поля радиопомех не применимы к частотам выше нескольких мегагерц. Это означает, что в настоящее время не может быть предложен принцип установки норм для частот, лежащих выше диапазона средних волн.

Поле радиопомех вблизи подстанции, создаваемое источниками помех, расположенными внутри подстанции, может представлять собой совокупность поля непосредственного излучения и поля помех распространения по проводам, которое создается токами проникновения в провода ЛЭП, отходящих от подстанции. В настоящее время нет достаточного объема данных по излучаемой составляющей помехи, поэтому будут рассматриваться только помехи токов проникновения. В этом случае определяется координация между токами помех проникновения и токами, создаваемыми коронными разрядами на проводах линии.

5.7.1. Токи помех, создаваемые элементами линии и линейной арматурой

Для оценки влияния изоляторов и проводов на поле помех достаточно сравнить ток, создаваемый гирляндой изоляторов, с током IL, создаваемым пролетом провода одной фазы линии. Если ток, создаваемый гирляндой изоляторов, меньше IL, то его значение в суммарном поле помехи от линии мало; если он равен IL, то уровень помехи из-за влияния изоляторов повысится примерно на 3 дБ; если он больше IL, то поле помехи от линии будет, в основном, определяться помехами, создаваемыми изоляторами.

Если норма на ток изоляторов установлена равной IL/3, т.е. на 10 дБ меньше значения тока IL, то суммарное поле помехи увеличивается примерно на 0,5 дБ. Это увеличение настолько мало, что на практике оно не заметно.

Кроме гирлянд изоляторов следует рассмотреть другие элементы и линейную арматуру (распорки, гасители вибраций и предупредительные сигнальные устройства для самолетов). Если на пролет приходится N единиц любого элемента линейной арматуры, то уровень радиопомех на один элемент должен быть не более x048.gif от уровня помех, создаваемых гирляндой изоляторов.

Суммарный ток радиопомех (на один пролет) от всех элементов линейной арматуры определяется суммой квадратов значений токов от каждого элемента.

5.7.2. Ток помех, создаваемых оборудованием подстанции

Оборудование подстанций рассматривается как генератор тока радиопомех. Проблема состоит в изучении распространения тока помех по линии, т.е. затухания и искажения электромагнитного поля, связанного с этим током. Для этого используется модальный анализ.

Обычно с подстанцией связаны более одной ЛЭП. Для определения тока помех, вносимого в одну из ЛЭП, необходимо знать не только импеданс всех отходящих линий, но и импеданс оборудования подстанции, состоящего из шин, выключателей, разъединителей, трансформаторов, конденсаторов, других элементов, являющихся источниками тока помех. В этом случае можно рассчитать ток помех, вносимый в ЛЭП.

В худшем случае можно предположить, что импеданс оборудования подстанции равен бесконечно большой величине. Тогда при N единиц оборудования, каждая из которых создает ток помехи I0 при n отходящих ЛЭП, ток помех, проникающих в линию, вычисляют по формуле

x050.gif                                                                           (12)

Отсюда ясно, что самой неблагоприятной является подстанция, имеющая одну ЛЭП. Если ток, рассчитанный таким методом, равен значению тока, создаваемого коронным разрядом на проводах линии, то увеличение поля радиопомех в первом пролете от подстанции составит приблизительно 3 дБ; но уже на расстоянии 1 или 2 км дополнительный ток помех, а, следовательно, и увеличение поля, становятся незначительными.

5.7.3. Практический метод установления норм в низкочастотном и среднечастотном диапазонах

5.7.3.1. Элементы линии и линейная аппаратура

Начиная с функции возбуждения и матрицы линейных емкостей вычисляют ток помех, проникающий на единицу длины фазного провода. Суммарный ток I, создаваемый пролетом длиной L, вычисляют по формуле

x052.gif                                                                            (13)

где I - ток, создаваемый гирляндой изоляторов, А.

При сравнении тока, создаваемого гирляндой изоляторов, с суммарным, током h, рекомендуется добавлять запас в 10 дБ, чтобы гарантировать незначительность увеличения суммарного уровня поля помехи. Значение тока помехи, создаваемой изоляторами, должно быть максимальным при обычных погодных условиях вдоль трассы ЛЭП.

Ток (I) в дБ (мкА) от одной гирлянды изоляторов не должен превышать значения, вычисляемого по формуле

I = Е - 27 - K1,                                                                      (14)

где Е - допустимая напряженность поля радиопомех при заданных погодных условиях (на расстоянии 20 м от ближайшего провода линии), дБ (мкВ/м);

K1 - разность между уровнем помехи, создаваемой коронным разрядом на проводах при заданных погодных условиях и уровнем этой помехи при погодных условиях с максимальным уровнем помех, создаваемых изоляторами, дБ.

В формуле учтен запас в 10 дБ.

5.7.3.2. Силовое оборудование и линейная арматура подстанций

Общий ток помех I' в дБ (мкА), проникающий в линию от подстанции, не должен превышать значения, вычисленного по формуле

I' = E - 12 - K2,                                                                     (15)

где Е - допустимая напряженность поля радиопомех при заданных погодных условиях (на расстоянии 20 м от ближайшего провода линии), дБ (мкВ/м);

K2 - разность между уровнем помехи, создаваемой коронным разрядом на проводах при заданных погодных условиях, и уровнем этой помехи при погодных условиях с максимальным уровнем помех, создаваемых подстанцией, дБ.

Формула получена для высоты провода, равной 15 м и глубины проникновения в землю Pg = 7 м. В этой формуле запас в 10 дБ не предусмотрен.

В месте соединения ЛЭП и шин подстанции обычно имеет место рассогласование импедансов, что может привести к появлению стоячих волн радиопомех на первых километрах линии, результатом чего является изменение уровня помех на ±6 дБ вблизи подстанции. Это обстоятельство не учтено в формулах.

Примечания:

1. Нормы выведены на основании допустимой напряженности поля радиопомех.

2. Основная трудность в практическом применении этого принципа состоит в имитации условий эксплуатации испытываемого объекта в лабораторных условиях. В настоящее время отсутствует согласованная процедура имитации в лабораторных условиях общих условий эксплуатации, но этот вопрос находится в стадии рассмотрения. Предполагается, что измерения должны выполняться на оборудовании, работающем в условиях, близких к реальным условиям эксплуатации.

3. Нормы для отдельных видов оборудования подстанции, например, выключателей-разъединителей, автоматических выключателей и других элементов не могут быть указаны в этом документе, так как оборудование относится к сфере деятельности других технических комитетов. Однако при проведении измерений около подстанции влияние этого оборудования должно быть таким, чтобы обеспечивалось выполнение норм.


Словарь-справочник терминов нормативно-технической документации. . 2015.

Смотреть что такое "РД 50-725-93: Методические указания. Совместимость технических средств электромагнитная. Радиопомехи индустриальные от воздушных линий электропередачи и высоковольтного оборудования. Методы измерения и процедура установления норм" в других словарях:

  • Смысл норм СИСПР для ЛЭП и высоковольтного оборудования — 5.2. Смысл норм СИСПР для ЛЭП и высоковольтного оборудования В Рекомендации СИСПР 46/1 «Определение понятия норма СИСПР» и Публикации СИСПР 16 (ГОСТ 16842) определены статистические основы и критерий оценки соответствия нормам СИСПР продукции… …   Словарь-справочник терминов нормативно-технической документации

  • методы — методы: Методы косвенного измерения влажности газов, основанные на зависимости их оптических свойств от влажности. Источник: РМГ 75 2004: Государственная система обеспечения единства измерений. Измерен …   Словарь-справочник терминов нормативно-технической документации

  • Методы определения помех на соответствие нормам — 5.4. Методы определения помех на соответствие нормам Приближенное значение уровня радиопомех от коронных разрядов на проводах ЛЭП может быть рассчитано по каталогам с помощью профилей или по формуле E = 3,5gmax + 12r… …   Словарь-справочник терминов нормативно-технической документации

  • Технические аспекты определения норм — 5.3. Технические аспекты определения норм 5.3.1. Основной подход Основное требование получить требуемое отношение сигнал/помеха на входе приемника для удовлетворительного приема радиовещательных сигналов. При введении регламентирующих норм к… …   Словарь-справочник терминов нормативно-технической документации

  • Технические аспекты определения норм для оборудования линий и подстанций — 5.7. Технические аспекты определения норм для оборудования линий и подстанций Принцип установления норм на напряжение радиопомех для линейных изоляторов и защитной арматуры, а также для силового оборудования и защитной арматуры подстанций в… …   Словарь-справочник терминов нормативно-технической документации

  • Методика СИСПР измерения помех в диапазоне 0,15 - 30 МГц — 4.2. Методика СИСПР измерения помех в диапазоне 0,15 30 МГц 4.2.1. Частоты измерения Базисная частота измерений 0,5 МГц. Рекомендуется производить измерения на частоте 0,5 МГц ± 10 %, допускается использовать другие частоты, например, 1 МГц.… …   Словарь-справочник терминов нормативно-технической документации

  • Лабораторные измерения по методике СИСПР — 4.3. Лабораторные измерения по методике СИСПР 4.3.1. Введение Рассматривается метод, которым можно пользоваться в лаборатории или на измерительной площадке для измерения радиопомех, создаваемых оборудованием подстанций и компонентами,… …   Словарь-справочник терминов нормативно-технической документации

  • Технические — 19. Технические указания по технологии производства строительных и монтажных работ при электрификации железных дорог (устройства электроснабжения). М.: Оргтрансстрой, 1966. Источник: ВСН 13 77: Инструкция по монтажу контактных сетей промышленного …   Словарь-справочник терминов нормативно-технической документации

  • методика — 3.8 методика: Последовательность операций (действий), выполняемых с использованием инструмента и оборудования для осуществления метода. Примечание Совокупность последовательности реализации операций и правил конкретной деятельности с указанием… …   Словарь-справочник терминов нормативно-технической документации

  • Публикации СИСПР — 2.1. Публикации СИСПР 16 (1977) «Приборы СИСПР для измерений радиопомех и методы измерений» (ГОСТ 16842); 18 1 (1982) «Радиопомехи от воздушных линий электропередачи и высоковольтного оборудования. Часть 1. Описание физических явлений» ( title=… …   Словарь-справочник терминов нормативно-технической документации


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.